home *** CD-ROM | disk | FTP | other *** search
- /************************************************************************
- * *
- * N O T I C E *
- * *
- * Copyright Abandoned, 1987, Fred Fish *
- * *
- * This previously copyrighted work has been placed into the *
- * public domain by the author (Fred Fish) and may be freely used *
- * for any purpose, private or commercial. I would appreciate *
- * it, as a courtesy, if this notice is left in all copies and *
- * derivative works. Thank you, and enjoy... *
- * *
- * The author makes no warranty of any kind with respect to this *
- * product and explicitly disclaims any implied warranties of *
- * merchantability or fitness for any particular purpose. *
- * *
- ************************************************************************
- */
-
-
- /*
- * FUNCTION
- *
- * sin double precision sine
- *
- * KEY WORDS
- *
- * sin
- * machine independent routines
- * trigonometric functions
- * math libraries
- *
- * DESCRIPTION
- *
- * Returns double precision sine of double precision
- * floating point argument.
- *
- * USAGE
- *
- * double sin (x)
- * double x;
- *
- * REFERENCES
- *
- * Computer Approximations, J.F. Hart et al, John Wiley & Sons,
- * 1968, pp. 112-120.
- *
- * RESTRICTIONS
- *
- * The sin and cos routines are interactive in the sense that
- * in the process of reducing the argument to the range -PI/4
- * to PI/4, each may call the other. Ultimately one or the
- * other uses a polynomial approximation on the reduced
- * argument. The sin approximation has a maximum relative error
- * of 10**(-17.59) and the cos approximation has a maximum
- * relative error of 10**(-16.18).
- *
- * These error bounds assume exact arithmetic
- * in the polynomial evaluation. Additional rounding and
- * truncation errors may occur as the argument is reduced
- * to the range over which the polynomial approximation
- * is valid, and as the polynomial is evaluated using
- * finite-precision arithmetic.
- *
- * PROGRAMMER
- *
- * Fred Fish
- *
- * INTERNALS
- *
- * Computes sin(x) from:
- *
- * (1) Reduce argument x to range -PI to PI.
- *
- * (2) If x > PI/2 then call sin recursively
- * using relation sin(x) = -sin(x - PI).
- *
- * (3) If x < -PI/2 then call sin recursively
- * using relation sin(x) = -sin(x + PI).
- *
- * (4) If x > PI/4 then call cos using
- * relation sin(x) = cos(PI/2 - x).
- *
- * (5) If x < -PI/4 then call cos using
- * relation sin(x) = -cos(PI/2 + x).
- *
- * (6) If x is small enough that polynomial
- * evaluation would cause underflow
- * then return x, since sin(x)
- * approaches x as x approaches zero.
- *
- * (7) By now x has been reduced to range
- * -PI/4 to PI/4 and the approximation
- * from HART pg. 118 can be used:
- *
- * sin(x) = y * ( p(y) / q(y) )
- * Where:
- *
- * y = x * (4/PI)
- *
- * p(y) = SUM [ Pj * (y**(2*j)) ]
- * over j = {0,1,2,3}
- *
- * q(y) = SUM [ Qj * (y**(2*j)) ]
- * over j = {0,1,2,3}
- *
- * P0 = 0.206643433369958582409167054e+7
- * P1 = -0.18160398797407332550219213e+6
- * P2 = 0.359993069496361883172836e+4
- * P3 = -0.2010748329458861571949e+2
- * Q0 = 0.263106591026476989637710307e+7
- * Q1 = 0.3927024277464900030883986e+5
- * Q2 = 0.27811919481083844087953e+3
- * Q3 = 1.0000...
- * (coefficients from HART table #3063 pg 234)
- *
- *
- * **** NOTE **** The range reduction relations used in
- * this routine depend on the final approximation being valid
- * over the negative argument range in addition to the positive
- * argument range. The particular approximation chosen from
- * HART satisfies this requirement, although not explicitly
- * stated in the text. This may not be true of other
- * approximations given in the reference.
- *
- */
-
- #if !defined (__M68881__) && !defined (sfp004) /* mjr++ */
-
- #include <stdio.h>
- #include <math.h>
- #include "pml.h"
-
- static char funcname[] = "sin";
-
- static double sin_pcoeffs[] = {
- 0.20664343336995858240e7,
- -0.18160398797407332550e6,
- 0.35999306949636188317e4,
- -0.20107483294588615719e2
- };
-
- static double sin_qcoeffs[] = {
- 0.26310659102647698963e7,
- 0.39270242774649000308e5,
- 0.27811919481083844087e3,
- 1.0
- };
-
- struct exception xcpt;
-
- double sin (x)
- double x;
- {
- double y;
- double yt2;
-
- if (x < -PI || x > PI) {
- x = fmod (x, TWOPI);
- if (x > PI) {
- x = x - TWOPI;
- } else if (x < -PI) {
- x = x + TWOPI;
- }
- }
- if (x > HALFPI) {
- xcpt.retval = -(sin (x - PI));
- } else if (x < -HALFPI) {
- xcpt.retval = -(sin (x + PI));
- } else if (x > FOURTHPI) {
- xcpt.retval = cos (HALFPI - x);
- } else if (x < -FOURTHPI) {
- xcpt.retval = -(cos (HALFPI + x));
- } else if (x < X6_UNDERFLOWS && x > -X6_UNDERFLOWS) {
- xcpt.retval = x;
- } else {
- y = x / FOURTHPI;
- yt2 = y * y;
- xcpt.retval = y * (poly (3, sin_pcoeffs, yt2) / poly(3, sin_qcoeffs, yt2));
- }
- return (xcpt.retval);
- }
- #endif /* __M68881__, sfp004 */
- #ifdef sfp004
-
- __asm("
-
- comm = -6
- resp = -16
- zahl = 0
-
- "); /* end asm */
-
- #endif sfp004
- #if defined (__M68881__) || defined (sfp004)
-
- __asm(".text; .even");
-
- # ifdef ERROR_CHECK
-
- __asm("
-
- _Overflow:
- .ascii \"OVERFLOW\\0\"
- _Domain:
- .ascii \"DOMAIN\\0\"
- _Error_String:
- .ascii \"sin: %s error\\n\\0\"
- .even
- | m.ritzert 7.12.1991
- | ritzert@dfg.dbp.de
- |
- | /* NAN = {7fffffff,ffffffff} */
- | /* +Inf = {7ff00000,00000000} */
- | /* -Inf = {fff00000,00000000} */
- | /* MAX_D= {7fee42d1,30773b76} */
- | /* MIN_D= {ffee42d1,30773b76} */
-
- .even
- double_max:
- .long 0x7fee42d1
- .long 0x30273b76
- double_min:
- .long 0xffee42d1
- .long 0x30273b76
- NaN:
- .long 0x7fffffff
- .long 0xffffffff
- p_Inf:
- .long 0x7ff00000
- .long 0x00000000
- m_Inf:
- .long 0xfff00000
- .long 0x00000000
- "); /* end asm */
- # endif ERROR_CHECK
-
- __asm(".even
- .globl _sin
- _sin:
- "); /* end asm */
-
- #endif /* __M68881__ || sfp004 */
- #ifdef __M68881__
-
- __asm("
- fsind a7@(4), fp0 | sin
- fmoved fp0,a7@- | push result
- moveml a7@+,d0-d1 | return_value
- "); /* end asm */
-
- #endif __M68881__
- #ifdef sfp004
- __asm("
- lea 0xfffa50,a0
- movew #0x540e,a0@(comm) | specify function
- cmpiw #0x8900,a0@(resp) | check
- movel a7@(4),a0@ | load arg_hi
- movel a7@(8),a0@ | load arg_low
- movew #0x7400,a0@(comm) | result to d0
- .long 0x0c688900, 0xfff067f8 | wait
- movel a0@,d0
- movel a0@,d1
- "); /* end asm */
-
- #endif sfp004
- #if defined (__M68881__) || defined (sfp004)
- # ifdef ERROR_CHECK
- __asm("
- lea double_max,a0 |
- swap d0 | exponent into lower word
- cmpw a0@(16),d0 | == NaN ?
- beq error_nan |
- swap d0 | result ok,
- rts | restore d0
- ");
- #ifndef __MSHORT__
- __asm("
- error_nan:
- moveml a0@(24),d0-d1 | result = +inf
- moveml d0-d1,a7@-
- movel #62,_errno | NAN => errno = EDOM
- pea _Domain | for printf
- ");
- #else __MSHORT__
- __asm("
- error_nan:
- moveml a0@(24),d0-d1 | result = +inf
- moveml d0-d1,a7@-
- movew #62,_errno | NAN => errno = EDOM
- pea _Domain | for printf
- ");
- #endif __MSHORT__
- __asm("
- error_exit:
- pea _Error_String |
- pea __iob+52 |
- jbsr _fprintf |
- addl #12,a7 |
- moveml a7@+,d0-d1
- rts
- ");
- # else ERROR_CHECK
-
- __asm("rts");
-
- # endif ERROR_CHECK
- #endif /* __M68881__ || sfp004 */
-